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We examine the case of resonance for systems close to nonlinear systems, admit- 
ting of a parametric periodic solution. Among the eigenvalues of the matrix of 

the system’s linear part there are zero and pure imaginary ones. We have proved 
(under certain conditions) the absence of a periodic solution for the original sys- 
tem for which the generating solution is trivial. 

1. Consider the system 

d.ridt -= Ax + X (J) 7-- 11~ (t, T, p) (1.1) 

Here .z is an (1 + n)-dimensional vector, A is a constant matrix, X is an analytic 

function of T in a sufficiently small neighborhood of the origin (of order no less than 

second); the function F depends analytically on .I‘ and on a small positive parameter 

EL, F is continuous and 2~ -periodic in t . Let the equation 

111 -&()I =o (1.2) 

have ( 1 - 2m ) zero roots and 2m roots of the form 

& Nib .1/- 1 (i : 1, . . , p)O (1.3) 

(where Nj are integers), and for p = 0 let system (1.1) admit of a periodic solution 

with period T , depending on an arbitrary constant vector a 

a = co1 (a,, . . . . 2,) (1.4) 
2’ == 2nr (1 -1. h (a)) (1.5) 

We accept that for all the chosen eigenvalues of matrix A the elementary divisors are 

simple and that among the numbers Nj at least one equals unity. 
We consider the question of the existence of periodic solutions of Eqs. (1. l), .c (f, CL), 

x: (t, 0) = 0, under the conditions of principal resonance [I], when it is known that 
there are no solutions which can be expanded into series in integral powers of p. The 

existence of a parametric periodic solution of Eqs. (1.1) for n = 9 with period (1.5) 
can be ensured, for example, by the presence of E - 1 first integrals [a]. Equations (1.1) 

are of a more general class of systems than those close to Liapunov systems [ 1, 31. In a 
formulation other than that in [I] the latter systems have been treated in (*) and in 
[4]. In [5] in the analysis of Eqs. (1.1) it was assumed that h in (1.3) is an integer. 

In the present paper we investigate the case when h is not an integer, but among the 

quantitiesN&there are ( m - F ) integers ql, . . . , (l;n_,.. (Among the numbers pi there 

*) Kleimenov, A. F., Oscillations of Time-Lag Systems Close to Liapunov Sys- 

tems. Candidate Dissertation, Sverdlovsk, 1969. 
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can be multiple ones ; we exclude the case [5] when all the numbers qi are multiples 
of one of them). Then system (1.1) can be written as 

dv!dt = Bv + V ( u, 2) -+- pp (1, u, z> p) 
dzldt = Cz + 2 ( JI, z) + @ (t, 7~, z, p) 

I3 e diag (R,, B,, - . ., &-,), B, =I 
0 --4; 

I I qi O 

(id, ,..( m-r) 

Here v is an (E--- 2~~-dimensional vector, z is an (~2 -I- 2~~-dimensional vector, the 

functions V, Z, P, Q are of the same type as X, 8’ in (1. l), B, is the zero ( (E - 

2m)xf 1 - 2~~ )-matrix among the eigenvalues of matrix c there are no quantities of 

the form + q rz and Q is an integer. 
in (1.4) since at 

In the case being considered E -< 1 - 2r 
+I+ = 0 we can investigate, instead of (1.6). (1.7), the following sys- 

tem 
duldt = Bv + V (v, z (v)) 

where z = z (v) is a solution of the equation 

(dz,‘~Yv, (Bvf V)) = Cz -/- Z 

In what follows we use the following notation: 

a) g, (t) and ‘tc? (4 are the matrices of periodic solutions of the system 

d~~dt = Bv 
and the matrix adjoint to it ; 

b) ps is the integer closest to A (P* # 0); 

c) U = co1 (u(l), Y(2)), u(l) = co1 (Ill, . . *, /Jl- zrn) 

v(2) = co1 (z&m +I, - . ., Qq) 

(the same notation is used below for some other functions); 

d) [f (t>l = f (24 - f (0) 

We assume that the condition of principal resonance Cl, 53 
2x 

~===cwL **-~~~-2r)=~~~~(t)lI(t,o,o,O)dt~O 0.9) 

is satisfied, ; 

2, Theorem 2.1. If among the numbers qrr 
of the quantity h (h - po)-’ and the conditions 

. . . , qm_r there are no multiples 

P) (V, 0) = 0, @’ # 0 (2.1) 

are satisfied, then system (1.6) does not have periodic solutions x (t, p), 2 (t, O)= 0. 
For example, we can assume that the first of the conditions (2.1) is satisfied if there 

exist a necessary number of integrals for Eqs. (1.6). (1.7) at p = 0 [3, 5). 
Under condition (1.9) a periodic solution in integral powers of & does not exist. Let 

us prove the absence of periodic solution in fractional powers of p. The proof is carried 
out by the scheme used in Cl. 51; we indicate the main features. The desired periodic 

solution of Eqs. (I. 6), (1.7) with the initial conditions D (0) = a, z (0) = f3, where 
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fi is a sufficiently small constant vector, is written as 

2 (h a? P7 tL) =f (QP + z* CL? a, PI -t- El, (**.) 

Here ‘u*, z* , A(“) are analytic functions of a, p (‘the order of ug, Z+ is no less than 
second, the order of A(“) equals v), f (t) is some((n i- 2r) X (n + 27) )-matrix, 
depending on t. 

We have [l. 51 
[AI --z&s, 2 (t, a, p, 0) = 0 Zfzt,O)SO t2*31 

From the periodicity condition Izl = 0 we define, with due regard to (2.31, the ana- 
lytic vector 

P = 13 f% P)I p (a, 0) == 0 

and we substitute into the equation [v] = 0 having the form 

v(23t,C1,p(a,o),o>-a+~.(2n6+cD(a,~L)) =o (2*4) 

where CD is an analytic function of a, EL. Using formula (1.5) we replace the quantity 
&c in the following manner: 

23.x ==pP+T+&j, 
x = 2n (h - p*)h-’ 

t.J --x - 2np*h'%(lx) 

After an expansion into a series in powers of 5) (with due regard to Eq, (1.6)) ~ndition 
(2.4) takes the form m 

where we have not written out terms of higher than first order in a. Using formula 

(1.8) we compute the coefficient of a , i.e. the absolutely-convergent matrix series 
m 

2 +wr = exp (xB) - 1 = diag (B,, I’) 
3% -1 

T’ -- diag(F,, . . -, I’,_,), ri = I COS Xqi - I - sin Xqi 
sinxg 

i cos xq, - 1 I 
(i=l, . . . . m-r) 

In notation (c) Eq. (2.5) can finally be written as the system 

pR(a, p)zp (27~6'~' + dl'(a, ~1) = 0 GLf3) 

rp + . . . + p(2d2' + CP (a, p)) = 0 GL7) 

In Eq. (2.6) terms not depending on p vanish by virtue of the first condition in (2.1) 

and of the equality #j (a, 0) = 0) . 
Under the condition that among the numbers 41, . . . , qm-,. there are no multiples of 

the quantity h (h - &j-l, we have 
?n--T 

p+ IF-’ JJ (1 -cos31~i)+o 
i=l 

From Eq. (2.7) we find the analytic vectof 
$-’ = o? (&), p), a@ (0, 0) = 0 (2.8) 
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and we substitute it into (2.6). We obtain the condition 

R, (cd’), p) zs 2nP + aI,( p) = 0 

which no vector a(l) (p), a(i) (0) = 0 , can satisfy (under the resonance conditions 

a(t) # 0). We note that the conclusion obtained is valid for any E < I - 2r in (1.4). 

3 l If the first condition in (2.1) is not satisfied, then terms independent of p are 

present in (2.6). Consequently, the following theorem is valid. 

Theorem 3.1. If among the numbers yi, . . . , qm_r there are no multiples 

of the quantity h (h - p*) and V(r) ( ZJ, 0) # 0, then the number and the form of the 

desired periodic soiutions (in fractional powers of EL) of the system (1.6), (1.7) are de- 
termined by the number and the form of the solutions of the new Eq. (2.6) (after the 

substitution of (2.8) ). 
Notes. 1. Constraint (2.1) on the vector 6(i) is not imposed. When o(l) = 0, 

only the practical application of Theorem 3 is hampered since it is necessary to com- 

pute the first terms in the expansion of the function CD(l) (a, p) [5]. 

2. We can ascertain the regularity of the formation of the lower order terms (not 

depending on p) in Eq. (2.6) (see, for example, the computation of the coefficient of a 

in (2.5)). However, the obtaining of these terms in explicit form proves to be inexpe- 
dient in view of their cumbersomeness. It is more convenient to examine Eq. (2.6) in 
application to actual systems. Here we should take into account that in (2.8) the order 

of the function &) (c&l), 0) is not lower than the order of the function Pc2) (v(l), 0, 0) 
in (1.6). The latter fact essentially facilitates the composition of Eq. (2.6). For exam- 

ple, suppose that to within higher order terms 

v(2) ($) 0 0) = vas (20) + . . . ) , v h(a)=h(kqa)+... k&s 

where v@) are terms of s th order in D (l), h(n are terms of kth order in a. From Eq. 
(2.7) we find the vector uc2) (a(l), p) 

,@) (&), 0) 2xz cc(=) (x(1)) f . . . 

If the expansion of the function v (0 (V (l), 0, 0) starts with terms of order p < s 

v(1) (u’“, 0, 0) ZI $P) (JO) + . . . 

then Eq. (2.6) has the form 

v(m) (&‘) + . . . + p. (2nB(1) + D(1) (.(I), p)) == 0 

The author thanks S. N. Shimanov for attention to the work and for valuable advice. 
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